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ABSTRACT 

Any action of a finite index subgroup in SL(n ,Z) ,  n > 4 on the 

n-dimensional torus which has a finite orbit and contains an Anosov ele- 

ment which splits as a direct product  is smoothly conjugate to an affine 

action. We also construct first examples of real-analytic volume-preserving 

actions of SL(n ,Z)  and other higher-rank lattices on compact manifolds 

which are not conjugate (even topologically) to algebraic models. 

1. In troduct ion  

This paper can considered as a sequel to [K-L]. It is a part of a broad program 

directed toward understanding the dynamics of "sufficiently large" smooth group 

actions on compact manifolds. These actions display remarkable rigidity phenom- 

ena. For a sample of results related to different aspects of the program, we refer 

the reader to [Zl], [K], [K-S1], [K-S2] [P-Y], [Gr], [Gh], [H2], and [K-L-Z]. 
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Here we will consider only one aspect of this program. Namely, let F be 

an irreducible lattice in a semisimple Lie group of rank _> 2. At the 1984 MSRI 

conference [H1], and again in his I.C.M. address [Z1], Zimmer posed the following 

general question: What are the smooth ergodic actions of F on compact manifolds 

which preserve a smooth volume form? In particular, he lists three basic classes 

of such actions: 

(i) Isometric actions. 

(ii) F acts on M = H / A  via p, where F C G and A C H are lattices, with A 

co-compact, and p: G --* H is a homomorphism. 

(iii) F acts on M = N /A ,  where A is a (necessarily co-compact) lattice in a 

nilpotent Lie group N, and F is a lattice in G, where G is a semisimple 

group of automorphisms of N, such that F preserves A. 

All previously known examples of smooth, volume-preserving, ergodic F-actions 

were obtained from this list by simple algebraic constructions such as products, 

suspensions, and finite extensions. 

From the point of view of dynamics, isometric actions are very different from 

the other two types; the latter display both certain similarities (such as the 

presence of hyperbolic or partially-hyperbolic elements) and essential differences 

(e.g., examples of type (iii) always preserve a rational structure and in particular 

have a dense set of finite orbits, while for examples of type (ii) this is generally 

not the case). However, all three types are algebraic in that they preserve a rigid 

geometric structure in the sense of Gromov [Gr]: i.e., a Riemannian metric in 

case (i), a homogeneous H-structure in case (ii), and an affine connection in case 

(iii), and the same is true for the algebraic modifications mentioned above. 

In Section 4, we construct some new examples of real-analytic, volume- 

preserving, ergodic lattice actions (with a dense set of finite orbits) which do 

not preserve a rigid geometric structure. However, such a structure does exist on 

an invariant, open, dense set. This suggests the following general conjecture: 

CONJECTURE 1.1: Every smooth, volume-preserving, ergoclic action of an 

irreducible lattice F in a semisimple Lie group of rank _> 2 preserves a rigid 

geometric structure on a F-invariant, open, dense set. 

One important implication of our examples is that some additional hypothesis 

(for example, hyperbolicity or partial hyperbolicity for some element(s)) is needed 

to establish conjugacy with an algebraic model. 
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In Sections 2 and 3, we establish a fairly definitive global rigidity result for a ba- 

sic example of type (iii), namely, the action of a finite-index subgroup in SL(n,  Z) 

on "~,  n _> 4 (Theorem 2.1). The two assumptions we need are the presence of a 

finite orbit and the existence of a "split" Anosov element (cf. 2.1, (ii)). (Both of 

these conditions are open in the Cl-topology; for the first condition, this follows 

by a theorem of Stowe [St], together with HI-vanishing, cf. [K-L].) It is probably 

worth remarking that we make no a priori  assumption about the existence of an 

invariant volume form, or even an absolutely continuous measure. 

The proof of (2.1) is divided into two components. In Section 2, we establish 

topological conjugacy under the above hypotheses, by a refinement of the method 

developed in our previous paper [K-L]. This method makes extensive use of the 

rational (periodic) structure for the linear action, together with purely group- 

theoretic information about the structure of F, such as the congruence subgroup 

property and the Margulis finiteness theorem. The central idea is to tie together 

this algebraic information with the orbit structure for the action via hyperbolic 

dynamics (the Franks-Manning classification of Anosov maps on tori and the 

description of their centralizers). 

In Section 3, we show that any F-action which is topologically conjugate to 

a linear action and contains an Anosov element is in fact smoothly conjugate. 

(This generalizes an earlier result established by Hurder [H2], who required a 

collection of n commuting Anosov elements with associated 1-dimensional strong 

stable foliations such that the 1-dimensional subspaces span the tangent space at 

every point.) The two main ingredients in the argument are first, the application 

of Margulis's superrigidity theorem to the isotropy representation of the stabilizer 

at each periodic point, and second, the Livshitz-Sinai criterion for the existence 

of smooth invariant measures for Anosov diffeomorphisms. The main point is 

that in the presence of an Anosov element, the finite-dimensional periodic data  

must "glue together" to yield a continuous reduction of the derivative cocycle to 

the cocycle defined by the homomorphism F ~ GL(n ,  Z) corresponding to the 

action on homology. 

Our methods are applicable to some other lattice actions on tori (e.g., a sub- 

group of finite index in Sp(n,  Z), n _> 3, acting on T2n), as well as some special 

cases of type (ii). 

An alternative approach to both local and global rigidity for volume-preserving 

actions is based on Zimmer's superrigidity theorem for cocycles together with 
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Kazhdan's property T [K-L-Z]. Two advantages of this method are that  it is 

applicable to actions of lattices in groups of rank 2, in particular to actions of 

subgroups of finite index in SL(3, Z) on T 3, and that it does not require the exis- 

tence of an invariant rational structure. The two techniques are complementary 

and parallel, in that  the first requires the existence of a finite orbit, while the 

second requires an absolutely continuous invariant measure. Since the existence 

of a periodic orbit is equivalent to the existence of an invariant atomic measure, 

the hypotheses may be viewed as extreme cases of the more general hypothesis 

that the action preserves a non-trivial finite measure. This observation very nat- 

urally leads to a question whether the latter hypothesis is sufficient for rigidity 

under proper hyperbolicity assumptions. The remaining case is that when the 

measure in question is singular non-atomic. A posteriori, such measures do not 

exist since for algebraic actions the only invariant measures are combinations of 

atomic and Lebesgue. As shown in [K-L-Z] rigidity for actions pereserving non- 

atomic measures holds under a somewhat stronger hyperbolicity assumption. 

The first author discovered the basic construction described in Section 4 while 

visiting I.H.E.S., and he would like to thank the faculty there for providing an 

ideal working environment. The second author prepared portions of this paper 

while visiting I.M.P.A. and the mathematics department at the Pennsylvania 

State University, and he would like to thank the faculties at both institutions for 

their hospitality; he would also like to acknowledge especially helpful conversa- 

tions with D. Ramakrishnan and J. C. Yoccoz. 

2. Topological conjugacy 

The main rigidity result in this paper is the following" 

THEOREM 2.1: Suppose F is a subgroup of  finite index in SL(n ,Z) ,  n _> 4, 

M = T ~, and p E R(F, Diff(M)) such that 

(i) there exists a fixed point, i.e., there exists xo E M such that p('r)x0 = xo 

for every 7 C F, 

(ii) there exists a direct-sum decomposition of Q'~ as a vector space over Q, 

Qn = V l S V 2 ,  VI~-Q k, V2- -Q  t,  k + e = n ,  k,e>_2,  

and an element Ao E A = {7 E F [ 7V/ = V/, i = 1,2} such that the 

diffeomorphism p(Ao) is Anosov. 
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Let p.: F --* GL(n,  Z) denote the homomorphism corresponding to the action on 

Hi (M)  ~ Z n. Then p is smoothly equivalent to the linear action corresponding 

to p,; i.e., there exists a diffeomorphism h of M,  homotopic to the identity, such 

that p('y) ---- hp.(~)h -1 for every 7 E F. 

Remarks: 1. To make our result completely parallel to that of [K-L-Z] for 

actions perserving an absolutely continuous measure we would have to replace 

(ii) by a weaker assumption of existence of some (not necesserily split) Anosov 

element in the action. 

2. Under conditions of the theorem the action of the whole group F is diffeo- 

morphically equivalent to an afJine action which may not have a fixed point. See 

the comment before Lemma 2.15 and [H3]. 

In this section we prove the topological version of (2.1); namely, the exis- 

tence of a homeomorphism h, homotopic to the identity, conjugating p and p.. 

Before beginning the proof itself, it will be convenient to establish some purely 

algebraic results and notation. For each m E N +, let F(m) = SL(n, Z),~ = 

{'~ E SL(n, Z)[ -y ~ I mod m} denote the principal congruence subgroup mod 

m in SL(n, Z). A subgroup in SL(n, Z) is called a c o n g r u e n c e  s u b g r o u p  if it 

contains F(m) for some m. The following celebrated theorem of Mennicke and 

Bass-Lazard-Serre [B-M-S] appeared as (5.3) in [K-L]. 

PROPOSITION 2.2: For n >_ 3, every subgroup of finite index in SL(n,Z)  is a 

congruence subgroup. 

LEMMA 2.3: Suppose A0 E SL(n,C) such that AoF(m)Ao I c SL(n,Z) .  Then 

there exists a scalar matrix A E GL(n,  C) and A E GL(n,  Q) such that Ao = AA. 

Conversely, if  A E GL(n,  Q) and m E 1~ + , then there exists m' E N + such that 

AF(m ' )A  -1 C r(m).  

Proof: The second assertion is obvious; simply take m' = md 2, where d is a 

common denominator for the entries in A and A -1. 

To establish the converse, set G = SL(n, C ) / Z ( S L ( n ,  C)), and let ;r: SL(n, C) 

--+ G denote the projection. Recall that G has a natural Q-structure, which is 

most easily realized via the adjoint representation on s[(n, C). 

Our hypothesis on A0 implies that  ;r(A0) E CommG(Gz), where Commc(F) = 

{g E G[ gFg -1 and F are commensurable}. It follows from a general theorem due 

to Borel (Proposition 6.2.2 in [Z2]) that CommG(Gz) = GQ, hence ;r(A0) E GQ. 

Equivalently, conjugation by A0 defines a Q-rational automorphism of SL(n, Q). 
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Let T denote the standard maximal Q-split torus in SL(n, C), i.e., the diagonal 

subgroup. Then AoTA o i is again a maximal Q-split torus in SL(n, C), and there 

exists B E SL(n, Q) such that B T B  -1 = AoTAo 1, i.e., so that B-1Ao E NIT),  

the normalizer of T in SL(n, C). Then there exists a permutation matrix S E 

GL(n, Q) so that SB-1Ao E Z(T) = T. Finally, it is obvious that any diagonal 

matrix in ~r-I(GQ) must be a scalar multiple of a matrix in GL(n, Q). | 

The following well-known observation will play an essential role below, as it 

did in [K-L]; a proof appears under Proposition 0 of [P-Y] (cf. also the proof of 

(2.7) below). 

LEMMA 2.4: Suppose that A E SL(n, Z) is a hyperbolic linear automorphism of 

T n, and qo: ~ --* ~'~ is a homeomorphism which fixes the origin and commutes 

with A. Then ~ E GL(n, Z) is linear. 

The first step in the proof of (2.1) is to reduce to the case in which p.: F --* 

GL(n,  Z) is simply the inclusion p.('y) = % 

PROPOSITION 2.5: There exists a subgroup F' C F of finite index (at most two) 

and a matrix A E GL(n,  Q) such that A conjugates the restriction p. IF': F' 

GL(n, Z) to either the identity or the Cartan involution (inverse transpose). 

That is, either P.(7) = e(7)A7 A-1 for every 7 E F or P.(7) = ~('Y)A(~/-1) tA-1 

for every "y E F, where t: F -* {+l} is a homomorphism with kernel F ~. 

Proof'. Passing to a subgroup of finite index (at most two), we may assume 

that p.(F) C SL(n, Z). Consider the induced homomorphism ~: F --* GR (where 

G denotes the Q-group SL(n, C) /Z (SL(n ,  C) ), as above). Set t t  C G equal 

to the Zariski closure of ~o(F). By (3.1.8) in [Z2], I-I is defined over R (in fact 

over Q). Passing to the finite-index subgroup qo-l(H~ we may assume that 

t t  is connected. Now set I:I equal to the quotient obtained by first dividing 

H by its radical, then dividing the resulting group by its center. I=I is a con- 

nected semisimple Q-group with trivial center. Write I:I = H'  x H", where tt~ 

is compact and (tti)R is non-compact for every simple factor Hi of H'.  Then 

by Margulis's superrigidity theorem (Theorem 5.1.2 of [Z2]), the induced homo- 

morphism ~': F ~ H~ extends to an R-rational homomorphism SL(n, C) --* tt ' .  

Examining the list of finite-dimensional C-linear representations of sI(n, C), we 

see that there are only two possibilities: either H'  is trivial or H'  = I=I = H = G. 

Now if I-I' were trivial, p. (F) would be contained in a compact extension of 

a solvable group, hence p.(F) would be amenable. But F, and therefore p.(F), 
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are Kazhdan, and any amenable Kazhdan group is compact. Thus p.(F) would 

have to be finite. But by a theorem of Manning [M], any Anosov diffeomorphism 

of M acts by a hyperbolic automorphism on H1. Thus the first possibility is 

excluded since p(Ao) is Anosov, and ~ extends to an R-rational homomorphism 

SL(n, C) ---* G. Returning to the list of representations of sI(n, C), we see that  

after passing once again to a subgroup of index at most two and conjugating by 

some matrix Ao E SL(n,C),  the only possibilities for p. are the identity map 

and the Caftan involution ~ ~-+ (~-l) t .  

We have shown that there exists a subgroup F t C r of index at most four such 

that either P,('7) = Ao'VAo 1 or P.('7) = Ao('7-1)tAo 1 for every "~ �9 F', where 

A0 �9 SL(n,C) such that Aor'Ao 1 c SL(n,Z). By (2.2), F' D r(m) for some 

m �9 N +, so by (2.3), we can write A0 = AA, with A �9 GL(n ,C)  scalar and 

A �9 GL(n,  Q). 

Finally, it is well-known (and easy to see) that  the centralizer of any subgroup 

of finite index in SL(n, Z) in GL(n,  R) is equal to the subgroup of scalar matrices, 

and the only scalars in GL(n,  Z) are +I .  F' has a subgroup Fo of finite index 

which is normal in F. Then it is easy to see that  any homomorphism F -~ 

GL(n,  Z) which restricts to the identity (or the Caftan involution) on F0 can 

differ from the corresponding homomorphism on F only by a homomorphism 

~: r -~  {=LI}. . 

One immediate consequence of (2.5) is that p.(~,) is hyperbolic for every 

hyperbolic matrix ~ E F. This makes it possible to establish the following 

LEMMA 2.6: Suppose that there exists a subgroup r t c F of finite index such that 

the restriction p I F' is topologically equivalent to the linear action corresponding 

to the restriction (p, [ Ft): F' ~ GL(n,  Z) by a homeomorphism h of M such 

that h(O) = Xo. Then p itself is topologically equivalent to the linear action 

corresponding to p,. 

Proof: By (5.2) of [K-L], F is generated by a finite collection of hyperbolic 

matrices~ say {~1,.. .  ,%}. By hypothesis, there is a homeomorphism h of M, 

homotopic to the identity, such that h(0) = xo and P('r) = hP.(~)h -1 for every 

"r E F'. Since each ~i has infinite order and F ~ is of finite index, there exist 

n i E N  + , l < i < r , s u c h t h a t ~ E F ' .  

C)bviously the diffeomorphism h-lp('Ti)h commutes with the hyperbolic 

linear automorphism h-ip('7~')h = p.(~/i) n' and h-lp('7~)h(O) = 0, so by (2.4), 
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h-lp(~/~)h is a linear map. But since h is homotopic to the identity, it follows by 

comparing the actions on H1 that  h-lp(~/~)h = p.(~/i). I 

Note that  the hyperbolic matrix •o appearing in condition (ii) of (2.1) has 

infinite order, so that  given any subgroup F' of finite index in F, there exists 

N �9 N + such that  ) ~  �9 F'. Obviously p()~o N) = p()~o) g is Anosov. Thus F'  

satisfies the same hypotheses as F, and we may pass freely to subgroups of finite 

index without loss of generality. 

Now take F'  and A �9 GL(n ,  Q) as in (2.5). Fix m �9 N + so that  A - 1 F ( m ) A  C 

F' by (2.3) and define p' �9 R(F(m) ,Dif f (M))  by setting p'(~,) = p(A-I"~A) or 

p'(~/) = p(A-l(~/-1) tA) ,  respectively. Then p'.(-y) = ~, for every 3, �9 F(m),  and 

p'(~) = h~h -1 ~ p(~) = hp,(~)h -1 

Thus we may assume without loss of generality that  p.(~,) = ~/for every ~/ �9  F. 

Conjugating p by a translation, we may assume that  the fixed point x0 equals 

the origin, so that  p lifts uniquely to an action t5 �9 R(F, Diff(~'~)) such that  

tS('~)(0) = 0 and tS(~/)(x + z) = tS(~/)(x) + 3'z for every "), �9 F, x �9 R n , and z �9 Z '~. 

LEMMA 2.7: Suppose that the lift o[ p to some finite cover is topologically 

equivalent to the standard linear action. Then p is topologically equivalent to 

the standard linear action. 

Proof: The hypothesis is equivalent to the existence of a homeomorphism h of 

R n and N �9 N + such that/5(~,) = h-rh -1 and h(x + Nz )  = h(x) + N z  for every 

~, �9 F, x �9 R ~, and z �9 Z n. Then the claim is that  in fact h(x + z) = h(x) + z 

for every z �9 Z n. 

Fix a hyperbolic element "Yo �9 F. Since 

~-~o~-l(x + z) = ~vo~-~(x)  + "y0z Vx �9 ~n, z �9 z ~, 

~ - ~ ( x  + z) = ~ - 1 ( ~ )  + ~ z  vx �9 ~ ,  z �9 z ~, i �9 z .  

Since 

h ( x + N z ) = h ( x ) + N z  V x � 9  z � 9  n, 

there exists a finite constant 6 > 0 such that  

d(h(x), x) < ~ Vx �9 ]R '~. 

Thus 

d ( ~ s  + z ) , ~ ( ~ - l ( x )  + z)) < 25 Vi �9 Z. 
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But  this implies tha t  h - l ( x  + z) = h - l ( x )  + z, since "~0 is hyperbolic.  Thus  

h(x + z) = h(x) + z, as claimed. | 

We are now in a posit ion to s tandardize  condit ion (ii) in (2.1). In par t icular ,  

given V1 -~ Qk and V2 ~- Q~, there exists a ma t r ix  A �9 S L ( n , Q )  such tha t  

AV~ = W~, i =  I,2, 

w 1 - - Q e l e . . . e Q e k ,  w 2 = Q e k + l e . . . e Q e n ,  

respectively, where ei denotes the ith s tandard  basis vector.  For large enough m C 

N +,  F (m) ,  A - I F ( m ) A  c F. Let 5 e R ( r ( m ) , D i f f ( R n ) ) ,  ~(~)  = A~(A-I" /A)A -1 

Fix a common  denomina tor  N �9 N + for the entries in A -1.  Then  5 satisfies 

5('y)(x + Nz)  = ~(~)(x) + N z  Vx e R n, z �9 Z n. 

In other  words, ~ descends to an action a on a suitable finite cover, and the 

corresponding act ion on H1 satisfies a , ( 'y)  = "y for every "y E F(m) .  Then  if h 

is a homeomorph i sm of T ~, homotopic  to the identity, such tha t  h(0) : 0 and 

a(~) = h~h -1, we have ~('~) = A - l h A ? A - l h - I A ,  where h is the unique lift 

of h to a homeomorph i sm  of ]~n such tha t  h(0) = 0. But  A - l h A  descends to 

a conjugat ing homeomorph i sm  for p on a suitable finite cover, so we can apply  

(2.7). Also, for large enough m ' ,  N �9 N +, AF(m')A -~ c r(m), ~0 N �9 r(m'), and 

o'(A.kNA -1) is smooth ly  conjugate  to a lift of p(.,kO) g and is therefore Anosov. 

Thus we m a y  assume without  loss of generali ty tha t  the ra t ional  subspaces Vi in 

condit ion (ii) of (2.1) are in s t andard  position, i.e., t ha t  

V1 = Qel O ' "  �9 Qek and V2 : Qek+l G " "  G Qe~. 

We can summar ize  the reductions we have made  and establish no ta t ion  as 

follows. We suppose F = F(m) ,  the principal  congruence subgroup m o d  m. 

The  origin is a fixed point  for the act ion p, i.e., p('~)(0) = 0 for every "y �9 F, 

the h o m o m o r p h i s m  p,:  F --* SL(n ,  Z) corresponding to the act ion of F on H1 is 

s imply the inclusion, "~ ~-* ~, and there exists a hyperbol ic  element A0 �9 A (where 

A is the subgroup which preserves the s tandard  spli t t ing V1 | V2, as above) such 

tha t  P()~0) is Anosov. 

Set 

A1 -- {V �9 r I ~/Vi -- Vi, i : 1,2, and "fly1 = Idyl}  --- SL(g ,Z)m,  

A2 = {*f �9 FI "yVi = Vi, i = 1,2, and "YIv2 = Idv2} -~ S L ( k , Z ) m .  
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Note that A = A1 x A2. Since there is little danger of confusion, we denote by 

Vi as well the corresponding subspaces in R", so that 

V1 = Re1 ~ . . .  @ Rek and I/2 = ~k-{ -1  ~]~ "" " ~]~ ~ g n "  

Let zr: R n --. ~ denote the natural projection and set Ti = 7r(Vi), i = 1, 2, so 

that TI is the fixed-point set for the linear action of A1, and T2 for A2. The key 

ingredient in the proof of (2.1) is the following 

LEMMA 2.8 (cf. (3.4) in [K-L]): There exists a homeomorphism h of T",  

homotopic to the identity, such that h(0) = 0, and setting :Fi = hTi, Ti C 

{x �9 v" I p( )x = x �9 h l } ,  i = 1, 2. 

Proof'. By a theorem of Franks [F], the Anosov diffeomorphism p(Ao) is conju- 

gate to the linear action of Ao = p.(A0) by a homeomorphism h, homotopic to 

the identity, such that  h(0) = 0. Set :Yi = hTi, i = 1, 2. 

Write Ao = (a0J3o), where a0 E A1 and j3o E A2 are hyperbolic. Then since 

h- lp (ao)h  and h-lp(Ao)h = Ao commute and h-lp(ao)h(O) = O, it follows from 

(2.4) that h- lp (ao)h  = ao. 

Then if ~3 �9 A2 is any element whatsoever, h-lp(13)h and h- lp (ao)h  = ao 

commute and h-lp(B)h(O) = 0, so that h-Xp(/~)h must preserve T2, which may 

be characterized as the closure of the stable (or of the unstable) manifold for ao 

through 0. Then since ao IT2 is hyperbolic, it follows by another application of 

(2.4) that  h- lp(~)h[T2 = IdT2. Hence p(j3) IT2 = Id:t 2. An analogous argument 

shows that p(a)(x)  = x for every a �9 A1 and x �9 T1. | 

LEMMA 2.9: For each N > 2 set 

AN = 1 m 
Nm Nm2+l E r .  

It-1 

Then the subgroup EN generated by A1 together with ANA2AN 1 is a subgroup 

of finite index in F. 

Proof'. Establish notation as follows. For 1 _< i, j _< n, let e i j  denote the matrix 

with 1 as its ( i , j) th entry and all remaining entries 0. Then for z E Z and i ~ j 

let E i j ( z )  denote the elementary matrix E i j ( z )  = I + z  ei j  E SL(n,  71.). As usual, 

for A, B e SL(n,  Z), we denote by [A, B] = A B A - 1 B  -1 the commutator.  For 
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l < i < k a n d k + l < j < n ,  

[,~NEi,k(m)AN 1, Ek+l,n(m)] = Ei,n(-m3),  

[En,k+l(m), ANEk.i(m))~N 1] = En,i(Nm3), 

[Ei,n(m3), En,j(m)] = Ei,j (m4), and 

[Ej,n(m), En,i(gm3)] = Ej, i (gm4).  

Then for k + 1 _< j _< n, 

ANEl,k(m3)AN1El,k+l(m 4) = El ,k ( (Nm 2 + 1)m3), 

Ek+I,I(--Nm4)ANEk,I(m3)AN 1 = Ek,l(m3), 

[Ek,l(m3), E1j(m4)] = Ek,~(m7), and 

[E3,1(Nma), Ex,k((Nm 2 + 1)m3)] _- E3,k((Nm 2 + 1)gm7). 

In particular, Ei , j ( (Nm 2 + 1)Nm 7) E ZN for every 1 < i # j < n. Thus by an 

observation due to Vaserstein [V] (cf. (5.8) in [K-L]), E N D  F(((Nm2+I)NmT)2).  

II 

In order to complete the argument, we need a collection of Anosov generators. 

(The fact that the generating set is finite is actually irrelevant.) 

LEMMA 2.10: There exists a subgroup F' C F of finite index such that F' has a 

finite generating set { ' r l , " " ,  %} such that each P(Ti) is Anosov. 

Proof." Set F' equal to the normal subgroup generated by A0, i.e., F' is the 

smallest normal subgroup containing 7o. By a theorem of Margulis and Kazhdan 

(Theorem 8.1.2 in [Z2]), any infinite normal subgroup in F is of finite index. Any 

lattice in a connected Lie group is finitely-generated; for lattices in groups of 

R-rank > 2 this follows from Kazhdan's property T w of [Z2]. It is easy to 

see that any generating set in a finitely-generated group contains a finite subset 

which generates. Since the collection {7Ao7-11 3' E F} obviously generates F' 

and each p(TA07 -1) = p(7)p(Ao)p(7) -1 is Anosov, the lemma follows. | 

Appealing once again to the theorem of Franks, we obtain homeomorphisms 

hi homotopic to the identity, such that hi(0) = 0 and P(Ti) = hiTih71, 1 < i < r. 

For each N _> 2, set T N = ,XNT2 C {x E 'r n ] p(~/)x = x v3, E ANA2)~N1}. Note 

that T1 and T g intersect in N m  2 -4- 1 points, evenly distributed along the circle 

C C T n which is the image under ~r of the k th coordinate axis. 
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LEMMA 2.11: Let {0 = qo, . . . ,  qNm 2 } = T i n t  N. Then the hi's agree on TINT N, 

i.e., hl(qi) . . . . .  hr(qi), 0 < i < N m  2. 

Proof: ((3.9) in [K-L]) As above, we denote by P(3'), hi the unique lifts to maps 

11~ ~ --+ R n which fix the origin. 

The pre-image r - l (T1 )  C R ~ is a countable collection of k-planes parallel to 

1/1. For z �9 7/, e, denote by Rz the component of rr-l(T1) through the point 

Rz = {x �9 r l  ~x = x + ~ (~ )  V~ �9 A,}.  

Similarly, 

where 

and 

where 

~--'(T~) = U s~, 
zEZ k 

st = {x �9 ~ 1  ~x = x + ~ ( 0 )  v~ �9 As}, 

= U Sz", 
z E Z  ,~ 

Z 

S Z = )~NSz : {X �9 ~ n  I ")'X : X + "~ ,~N(0)  V~ �9 )~NA2/~N1}. 

Likewise, 

where 

= U a., 
zEZ t 

Ro c {x �9 ~nl ~(~)x = �9 + ~(~) V~ �9 A,}. 

Set ~N = p(AN)T2, which is an g-torus of fixed points for p(ANA2AN1). Then 

zEZ k 

where 

~ = ~(~N)~ c {x e ~nl ~(~)x = x + VAN(~ V~ �9 ~NAIA~I}. 
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It is geometrically obvious that for any N �9 N + and z �9 Z k the topological 

t?-plane /~  and the topological k-plane SoN must have non-empty intersection; 

here is a simple proof: 

Let qo: R~ ~ R " denote the restriction qa = h I R~; qo maps R: homeomorphi- 

cally o n t o / ~ .  Define r SON --- ]~ ,  ~) = ~(~N)hAN1; ~ maps So N homeomorphi- 

cally onto SON. Since qo(x + ~) = qa(x) + ~ for every x �9 R~, ~ �9 Ro Cl Z ~ and 

r  + 4) = r  + 4 for every x �9 SoN, ~ �9 S g N Z n, there exists 5 > 0 such that 

( , )  d(qo(x) ,x )  < 5 Vx  �9 R~ and d ( g , ( x ) , x )  < ~5 Vx  �9 So N . 

Now suppose that /~z Cl SON = 0. Since R~ and So N are far apart outside a 
m z l  Z . compact neighborhood of R~ n So N = { (0 , . . . ,  N--~-r~, 1 , . . ,  ze)t}, the same is 

true for /~  and SON, so that for small perturbations of qa and r their images 

remain disjoint. Thus we may assume without loss of generality that  ~ and r 

are smooth. 

Let p: S n ~ ]~n denote the stereographic projection, and set R = p - l R ~ ,  

= p - l R z ,  S = p-ISON, and S = p-I~ON. R and S intersect transversally in two 

points: the original intersection point in R '~ and the point at infinity. It follows 

from (*) that R is homotopic to R, S is homotopic to S, and /~  and S intersect 

transversally at infinity. But Rz A SON = 0 implies that  this is their unique point 

of intersection, which is a contradiction, because the mod 2 intersection number 

is a homotopy invariant. 

For each j = O , . . . , N m  2, set zj  = (j, 0 , . . . , 0 )  t E Z e and 

~j = (0, .  m y  . . . ,  o)t, 
" "  N m  2 + 1'  

so that R~j NSo N = {~j), qo = 0; then r({qj 10 _< j < gm2})  = T1 N T N and we 

fix notation so that lr(Oj) = qj,  and set Xj = / ~ j  n SoN r 0. We will show that  

Xj consists of a single point X j  = {/3j} and that hi(~j )  = ~j for each i. Then 

h~(qj) = h~(Tr(~j)) = r (h i ( ( l j ) )  = 7r(/3j) for each i and the proof of (2.11) will be 

complete. 

So suppose x �9 Xj = / ~  N 5'ON. Then for each ~ �9 A1 we have 13(3,)x = 

x + 7 (  0 ) and for each ~ �9 )~NA2)~N 1 we have ~5('r)x = x. Since A1 and )~NA2)~ 1 

together generate EN, it follows that there is a cocycle a: EN -~ Z n such that  

th('y)x = x + a(7) for every 7 �9 EN. 



266 A. KATOK AND J. LEWIS Isr. J. Math. 

Fix one of the generators "Yi. Then since "ri has infinite order and "--N has finite 

index in F, it follows that 7ff �9 E~v for some K _> 1. Now we have already 

ensured that the diffeomorphism P('Yi) is hyperbolic. In particular, the mapping 

p('yi) K - I d :  T ~ -~ T '~ is non-singular at each point of T ~, and jS(-yl) K - I d :  R n 

~n is a diffeomorphism. 

Since jS(~/i) K - Id is invertible, there is a unique point 

p j  = ( ~ ( " [ i )  K - -  I d ) - l a ( v i  K) �9 R n 

such that  ~(Ti)Kpj = fit + a(Tg)  �9 Thus Xj  = {/Sj}. Moreover, ~j is the unique 

point of R n such that 7fft~j -- t~j + a(-yi/~), hence 

= = + 

= h , ( 0 j )  + 

Thus hi(~j) = iSj and the proof of (2.11) is complete. | 

COROLLARY 2.12: hi(x) . . . . .  hr(x) for every x E C. 

Proof UN(T1 N T N) is dense in C. | 

COROLLARY 2.13: F/x "r0 E F. Then hi(x) . . . . .  hr(x) for every x E 7oC. 

ProoF'. The subgroups "roAl'Yo 1 and "/0ANA2ANI"yo 1 together generate "r0EN~o 1, 

which is again of finite index in F. Then the same argument that  established 

(2.11) shows that hi('roq) -- p('~o)hi(q) for every q E 7"1 A T2 N. | 

Since U~er ' rC is dense in T ~, this completes the proof of the topological 

version of (2.1). 

Finally, we consider the case in which the existence of a fixed point is replaced 

by the more general hypothesis, existence of a finite, orbit. We obtain the following 

COROLLARY 2.14: Suppose F C SL(n,Z)  of finite index, M = T ~, and p E 

R(F, Diff(M)) satisfies condition (ii) of (2.1), together with 

(i') there exists a finite orbit, i.e., xo E M such that the set p(F)xo is finite. 

Again let p.: F --+ GL(n ,Z )  denote the homomorphism corresponding to the 

action on H1. Then p is topologically equivalent to a rational affine action with 

linear part given by p,; i.e., there exists a homeomorphism h of M, homotopic 

to the identity, such that h-lp( 'r)h = P,(7) + a(7),  where a: F ---* Qn/Z'~ is a 
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cocyde in the coefficient module Qn/Zn (rational points on ~ ) with F acting 

via p,. 

Proo~ Set F ~ equal to the largest normal subgroup of F which is contained in 

the stabilizer of the periodic point x0. Since x0 has finite orbit and F is finitely- 

generated, F' has finite index in F. Thus F satisfies the hypotheses of (2.1), and 

there exists h E Homeol(M) such that h-lp(~/)h = p.(~/) for every ~ E F'. 

Fix hyperbolic generators { '~1,. . . ,  %} for the full group F by (5.2) of [K-L]. 

For each i, there exists ni E N + such that  ~ E F'. Consider the homeomorphism 

~ = h - l p ( 7 i ) h -  h-lp(~,i)h(O). Since 0 is a fixed point for the action of F' under 

h - l p h  and F' is normal in F, h-lp(~/~)h(O) is again a fixed point for h- lp (F ' )h  = 

p.(F'). Consequently, h-lp(~i)h(O) e Q'~/Z n is a rational point on the torus, 

and ~i commutes with t he linear Anosov diffeomorphism p. (7~') = h -  1 p(.r~, ) h. 

Since ~i obviously fixes 0, it follows by (2.4) that  ~i = P.(Ti). In other words, 

we have shown that h - l p ( ~ ) h  = P.(Ti) + a(~i), where a(~/i) = h-lp(~/i)h(O) E 

Q'~/Z n. Since the ~i generate F, this completes the proof. | 

Note that the affine action p, + a obtained in the preceding corollary is con- 

jugate to the linear action p. (by a translation) if and only if the cohomol- 

ogy class represented by the cocycle a is trivial, and the actions corresponding 

to different cocycles are equivalent (again by a translation) if and only if the 

cocycles are cohomologous. On the other hand, any non-trivial cohomology class 

in HI(F,Q'~/Z n) (with F action given by p.) gives rise to a non-linear affine 

action on T ~. See [H3] for examples of such affine actions. 

LEMMA 2.15: Any  cocycle a: F ---* Qn/Z'~ (F acting via p,)  must  vanish on a 

subgroup of finite index. 

Proo~ Since F is finitely-generated, say by 7 1 , . . . , % ,  there exists a common 

denominator m for the rational points a(~i). Thus the image of a is contained 

in the finite submodule m - l Z n / Z  n C Qn/Zn (m-division points). | 

Thus the "exotic" affine action corresponding to any cohomology class in 

Hi(F ,  Q~/Z n) must restrict to a linear action on a subgroup of finite index, 

or in other words, must have a finite orbit. It will follow immediately from 

(3.1), below, that  for actions with an Anosov element, topological and smooth 

equivalence coincide. Thus we will have shown 
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THEOREM 2.16: The set of smooth equivalence classes of smooth actions p E 

R(F, Diff(M)) satisfying the hypotheses of (2.14), above, are indexed by the set 

of equivalence classes of representations p, E/~(F, GL(n,  7/,)) which do not factor 

through a finite quotient (this set is finite by (2.5)) together with the cohomology 

group H 1 (F, Qn/Zn), with F acting on the coemcient module Qn /Z  ~ via p,. 

3. S m o o t h  con jugacy  

There are several results to date which support the following general philosophy: 

for "sufficiently large" smooth group actions, topological and smooth equivalence 

coincide. (E.g., our result for Anosov actions of Z '~-1 on T ~ ([K-L], Theorem 

4.12) and the recent theorem of Cawley [C] for non-Abelian groups generated by 

Anosov diffeomorphisms of T2.) In this section, we establish a similar result for 

F, generalizing "differential rigidity for Cartan actions," established in [H2]: 

THEOREM 3.1: Let F be a subgroup of finite index in SL(n, Z), n _> 3, M = T ~, 

and p E R(F, Diff(M)) such that 

(i) p is topologically equivalent to the linear action corresponding to p.: F --* 

GL(n,  Z), the homomorphism given by the action on HI(M) - Z n, and 

(ii) there exists 7o E F such that the diffeomorphism P(7o) is Anosov. 

Then the topological conjugacy h between p and p. must in fact be smooth. 

Proof'. Consider any rational point p E T ~. The orbit of p under the linear 

action p.(F) is finite, hence x = h(p) has finite orbit under p(F). Let F~ denote 

the stabilizer of x in F under p (which is the same as the stabilizer of p under 

p.); F~ is a subgroup of finite index in F and hence in SL(n,Z) .  

LEMMA 3.2: Let 

~ :  r~ ----, GL(T~M); 7 ~-* D~p(7) 

denote the linear isotropy representation at the fixed point x. Then up to choice 

of coordinates in T~M (conjugation in GL(n,  R)) in odd dimensions n the repre- 

sentation ~ agrees with p,, and, in even dimensions, the representations agree 

up to a factor of :l=I. (I.e., there exists r R n ~ T~M and a homomorphism 

~x: Fx ~ {+l} such that for each 7 E Fx, ~x(7) = ~(7)r162 -1, and when 

n is odd, ~ must be triviaL) 

Proof'. First observe that  since P(7o) is Anosov, ~ (70 )  is a hyperbolic linear 

transformation. Then the same argument which establishes (2.5) shows that 
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under the appropriate choice of coordinates, ~x coincides with either the standard 

or the contragredient representation on a subgroup of index at most two in Fx. 

It follows that for any hyperbolic element 3' E F~, ~ ( ' y )  is hyperbolic, i.e., 

x is a hyperbolic fixed point for p(~/). By the stable manifold theorem (e.g., 

Theorem III.7 in [Sh]), there are uniquely-determined, smooth, local stable and 

unstable manifolds for P(7) at x. Obviously, these manifolds must coincide with 

the global stable and unstable (topological) manifolds which are determined by 

the conjugacy. (In fact, since p(~/) is topologically conjugate to p.('y), the global 

stable and unstable manifolds through x are smooth; we can extend the smooth 

neighborhood in the unstable (stable) manifold by iterating p('~) (p(~/)-l).) In 

any event, the unstable (stable) subspace in T , M  is tangent to the global unstable 

(stable) manifold through x, and the dimension of the unstable (stable) manifold, 

which is determined by p., is equal to the number of eigenvalues of ~x('~) which 

lie outside (inside) the unit circle. Now any subgroup of finite index in SL(n, Z), 

n _> 3, contains hyperbolic matrices for which the dimensions of the stable and 

unstable manifolds are unequal, and these dimensions are exchanged under the 

contragredient representation. Thus ~ and p. agree on a subgroup of index at 

most two. 

Finally, for any diffeomorphism of an orientable manifold, the action on the ori- 

entation of the tangent space at any fixed point must coincide with the action on 

the global orientation, so the actions of ~ and p, on orientation (determinants) 

agree. II 

As a first application of (3.2), we obtain the following 

PROPOSITION 3.3: Let ~ denote the Lebesgue measure on M = T ~ (which is 

invariant under the action of GL(n ,  Z)). Then under the hypotheses of(3.1), the 

p-invariant measure # = h.A is given by a smooth positive density. 

Proof'. (3.2) implies that for each periodic point x of period N for the Anosov dif- 

feomorphism f = P(70), the determinant d e t ( D ~ f  v) = 1. By [L] and 

ILl-M-M], this implies that f preserves a smooth measure #, given by a smooth, 

positive density. 

Moreover, if we order the eigenvalues A1,. . . ,  ,kn for 7o (with multiplicity) so 

that IA~I > 1 for 1 _< i _< k and I)~l < 1 for k +  1 _< i < n, and denote 

by E ~ the (invariant) unstable distribution for f ,  then the Jacobian of the re- 

s t r i c t i o n l d e t ( D j N l E ~ ) l  = I)~1... Akl N. By [L], this implies that the function 
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J ~ :  x ~-~ log l d e t ( D ~ f l E ~ ) l  is cohomologous to a constant. Hence by [Si], the 

unique smooth invariant measure # for f (which is equal to the Gibbs measure 

for the function J ~ )  is equal to the Gibbs measure for the constant function. 

Hence # is equal to the Bowen-Margulis measure, which is characterized as the 

Gibbs measure for the constant. For the linear Anosov diffeomorphism P.('Y0), 

the Bowen-Margulis measure coincides with the Lebesgue measure A. Since the 

Bowen-Margulis measure is a topological invariant, we conclude that h.A = #. 

| 

We have already observed that the centralizer in GL(n ,  R) of any subgroup of 

finite index in SL(n,  Z) is just the set of scalar matrices. Thus the isomorphisms 

r  which appear in the statement of (3.2) are uniquely determined up to a scalar 

multiple. Under the identification of each tangent space T ~ M  with ]Rn via the 

standard (smooth) trivialization of T M  ~- T ~ • R ~ , each Cx is identified with an 

element of GL(n,  •). By the preceding discussion, this element is unique up to a 

scalar. Thus, by composing with the natural map GL(n ,  R) --* P G L ( n ,  R); g ~-* 

`O, we obtain a uniquely determined map 

~: S --* P G L ( n ,  R); x H r 

where S c M denotes the set of periodic points for p(F), such that for every 

x E $ and every "7 E F=, 

~l(x)p.(~/) = r = D=p(~)r 

(where D ~ p ( 7 ) r  is identified with an element of GL(n ,  R) via the trivializa- 

tion). The crux of the proof of (3.1) is to show that the presence of the Anosov 

diffeomorphism P(T0) implies that the map rl extends continuously to all of M. 

Let Gk(n,R)  = Gk(n,C) R denote the Grassman variety of k-planes in Rn, 

1 < k < n - 1. For each point P0 E Gk(n ,~ ) ,  the map 

P G L ( n , C )  ~ Gk(n,C);  ~ ~ gP0 

is ]R-rational; given ~0 E P G L ( n ,  ~) and P l , . . .  ,P t  C Gk(n,  ll~), the map 

P ( ] L ( n , R )  ~ (]k(n,R) e = Gk(n ,R)  • 2 1 5  (]k(n,~[); Ò ~-* (`OPl,...,.0Pt) 
Y 

s t imes  
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is a local imbedding on an open neighborhood of ~0 (via the inverse function 

theorem) if and only if the intersection of the infinitesimal stabilizers 

i=1,...,s 

is zero. In particular, this condition is satisfied provided that the intersection of 

the stabilizers ~i=1 ..... ePGL(n,C)~o~p, is trivial. 

Now suppose that the stable subspace for the hyperbolic linear automorphism 

p . (%)  is k-dimensional, and set Pl E Gk(n, R) equal to the corresponding point 

in the Grassman variety. By the Borel density theorem, the intersection 

N PGL(n, C)vp, = A 7(PGL(n, C)p,)7 -1 
"~EF "rEF 

is a (proper) normal subgroup of P G L ( n ,  C), hence is trivial. Thus we can choose 

matrices 0-1 = I,  o" 2 . . . .  , 0 - e  E F such that with p~ = 0-ipl, which is the stable 

subspace for P.(Ti) = P.(0-iToa~l), the stabilizer of the point p = ( P l , . . . , P e )  E 

Gk(n, R) e in P G L ( n ,  C) is trivial. It follows from a general theorem of Borel- 

Serre [B-S] (cf. 3.1.3 of [Z21) that the P G L ( n ,  R) orbit o fp  in the product variety 

Gk(n,  •)t is locally closed in the Hausdorff topology. Set C C Gk(n, R) e equal 

to the closure of this orbit, and let U C C denote the orbit itself, which is open 

in C. Note that by the preceding paragraph, for every g0 E P G L ( n , ~ ) ,  the 

map ~ H Oq is a local imbedding on a neighborhood of go in GL(n,  R), where 

q = (ql . . . . .  qt) = (~IoPl,... ,goPe) = goP E U. 

For 1 < i < g, let qi: M -* Gk(n, R) denote the map corresponding to the 

stable distribution for the Anosov diffeomorphism P(7~) = P(0-~)P(7o)P(0-~) -1 

under the identification of T M  with M • Rn via the standard trivialization. 

Now suppose x E S. It follows from the definitions that qi(x) = ~(x)pi. In 

particular, q(x) = (q l (x ) , . . . ,  qe(x)) E U. 

Since each of the maps qi is continuous (in the Hausdorff topology on Gk(n,  R) ), 

it will follow that ~? extends to a continuous map M ~ P G L ( n ,  R) simply by 

mapping x E M to the unique point ~ E P G L ( n ,  R) such that  ~p = q(x), 

provided that this makes sense, i.e., provided that q(x) E U for every x E M. 

We have already seen that this is true at every x E S. Since S is dense in M and 

C is closed, it follows by continuity that q(x) E C for every x E M. Then since 

U is open in C, the set 7"I = {x  E M I q(x) = (q l (x) , . . . ,qe (x) )  E U} is open in 
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M. Moreover, for any element "~ E F and any x E S, 

D~p(~)q(x) =D,p(~)~(x)p= y(p(~)x)(p.(~)p), 

where, as usual, we identify Dxp(7) with an element of GL(n ,  ~) via the standard 

trivialization. (In fact, we have only proved this for 7 E F~. But if x, p(7)x E S, 

the derivative Dxp(7) must intertwine the isotropy representation of Fx at x with 

that  of Fo(-r) ~ = 7F~'y -1 at p(~/)x, and we may again make use of the fact that  

the centralizer of F~ in GL(n ,  R) consists only of scalars.) Thus if x E TO, so 

that  q(x) = OP for some ~ e P G L ( n ,  R), and ~ E F, then q(p('~)x) = ~'p E U, 

where g' = D~p('y)gp.('y) -1, by continuity. In particular, p(~)x E Tr and the set 

Tr is invariant under the action of F. In other words, the complement M - Tr is 

a closed, F-invariant set. Now apply the following obvious fact; for the sake of 

completeness, we sketch a simple proof. 

LEMMA 3.4: The only closed, F-invariant subsets of M are finite unions of finite 

orbits. 

Proof: Obviously this property is invariant under topological conjugacy, hence 

it will suffice to establish it for the linear action p..  Suppose such a set contains a 

point x with infinite orbit, i.e., a point with at least one irrational coordinate, say 

x~. Considering the action of an appropriate unipotent matrix in F, we see that  

the closure of the orbit contains the circle C = {(Xl . . . . .  xi-1,  t , x ~ + l , . . . ,  x~) ] 

t E JR}. Since F acts minimally on pn-1,  the orbit of C is dense in ~ .  I 

Thus 7~ = M, r /extends  to a continuous map r/: M --* P G L ( n , R ) ,  and we 

obtain the following 

LEMMA 3.5: For every hyperbolic matrix "y E F, the diffeomorphism P('r) is 

Anosov. 

Proof." Let w denote the smooth F-invariant volume form on M which exists by 

(3.3). Under the identification of TM with M x R n , each wx, x E M, is identified 

with a map ~vx: G L ( n , R )  ~ R. When n is odd, the equation wx(0(x)) = 1 

uniquely determines a continuous lift of r / to  0: M ~ GL(n ,  R); when n is even, 

~: M ~ GL(n,R)/{=kI} is only defined up to a choice of sign. In any event, 

modulo {+I} ,  ~ gives a continuous equivalence between the derivative cocycle for 

the action of F and the constant cocycle corresponding to the linear representation 

p..  Thus the images of the stable and unstable subspaces for the linear Anosov 
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map P.(7) under ~ exhibit continuous stable and unstable distributions for p(7) 

explicitly. | 

We are now in a position to apply the argument of Section 4 in [K-L]. Fix an 

Abelian subgroup ,4 c F of rank n - 1 ;  p.(A) consists entirely of hyperbolic linear 

automorphisms, hence by (3.5) p(A) consists entirely of Anosov diffeomorphisms. 

According to Theorem 4.12 of [K-L], the restriction of this action to a subgroup of 

finite index is smoothly conjugate to p.. (In fact, since we have already observed 

that the conjugate action p preserves the finite-dimensional linear data at each 

periodic point, and in particular the periodic exponents, we need not appeal to 

[K-L], but may instead refer to [H2].) Since the conjugacy is unique up to a 

rational translation by (2.4), it follows that the homeomorphism h conjugating 

p to p, is smooth. | 

It is probably worth remarking that  rather than invoking either [K-L] or [H2], 

we can avoid reference to the subgroup A altogether and conclude directly that  

the continuous equivalence 0 constructed in the proof of (3.5) is in fact smooth. 

This follows from the fact that among the Anosov diffeomorphisms p(7), 7 E F, 

there are sufficiently many with C 1 stable and unstable foliations (e.g., those 

of codimension-1). This implies that the images of constant vector fields under 

the equivalence 0 are in fact C 1, hence uniquely integrable. It is easy to see 

that those vector fields commute and hence define a F-invariant, C 1, flat, affine 

structure on M. Using regularity results for Anosov maps, it follows that this 

structure is C ~ . Now it is easy to see that the structure must be conjugate to 

the standard one, and hence p is smoothly equivalent to an affine action. Since 

p has a fixed point, the equivalent affine action is linear. 

4.  A n e w  c o n s t r u c t i o n  o f  l a t t i c e  a c t i o n s  a n d  s o m e  o p e n  p r o b l e m s  

Our principal goal in this section is to describe some "new" smooth (in fact, real- 

analytic), volume-preserving, ergodic actions of higher-rank lattices on compact 

manifolds. Although the constructions are all quite elementary and the exam- 

ples appear (at least in retrospect) to be quite natural, they are not among the 

algebraic examples listed by Zimmer [Z1], and, to the best of our knowledge, 

they have not been discussed previously in this context. 

The basic construction is a simple variant of the well-known blowing-up proce- 

dure from algebraic geometry. In particular, we recall, very briefly, how to blow 
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up the origin in A n = &~(F), n > 2. We define a subvar i e ty  B C A s x ~ - 1  

as follows. Let x = ( x l , . . . , x n )  denote the usual affine coordinate on A '~ and 

[Y] = [Yl,- . . ,  Y~] denote the homogeneous coordinate on yn-1,  so that  [Ay] = [y] 

for all A E F, y e ]~ - {0}. Set 

B = { ( x , [ y ] ) E A  n x p ~ - l [ x i y j = x j y ~  V l < i , j < n } .  

Let r :  B ~ A n denote the map obtained by restriction from the projection onto 

the x coordinate. 

The following properties of B and r are easily verified. B is a smooth subvariety 

of A m x ~ - 1 ,  hence lr is obviously regular. For each x E A n - {0}, the preimage 

~r-l(x) is a single point, and 7r-1(0) - 1t ~ - 1 .  In fact, the restriction of 7r to 

B - ~r-l(0) is an isomophism onto A n - {0}, so that  B is obtained by "blowing 

up" the origin in A n to a copy of p ~ - l .  The standard linear action of G L ( n , F )  

on A '~ • ]?n-1 leaves B invariant, hence we obtain an action of G L ( n , F )  on B 

by isomorphisms. 

Now specialize to the case F -- R, and restrict the action of GL(n ,  R) to 

GL(n ,  Z). Replace the variety A '~ = R n in the preceding construction by M -- 

T ~. Then we obtain a smooth real subvariety lt:l of the compact real variety 

T ~ x F "~-1 on which GL(n ,  Z) acts by isomorphisms, together with a GL(n ,  Z)- 

equivariant regular morphism It: M ~ M which restricts to an isomorphism 

of the (Zariski-) open set U = 2~ / -  ~r-l(0) onto T ~ - {0}. Obviously the ac- 

tion of SL(n,  Z) preserves a smooth n-form on it:/, namely, the pullback of the 

standard volume form on T ~ under ~r. However, an easy calculation shows that  

the Jacobian of lr is zero along the exceptional divisor D -- ~r-l(0). 

To remedy this situation, and produce an example of an action which preserves 

a smooth (non-vanishing) volume form, we simply adjust the smooth structure 

in a neighborhood of D. The new structure which we introduce will in fact be 

real analytic, and with respect to this structure the action of GL(n ,  Z) will again 

be analytic. Also, the new structure coincides with the usual one on U = h : / -  D. 

The construction is purely local, and we shall in fact describe a real analytic 

structure on B C R ~ x ~'~-I(R) with respect to which the action of SL(n,  R) 

is analytic and preserves a smooth volume. In the context of the preceding 

discussion, we can give the following brief description. Begin by defining an 

exotic analytic structure on R n by replacing the standard coordinate x with a 

new coordinate x I = [[x[[n-lx. Note that  this structure is obviously equivalent 

to the old one on R n - {0}. 
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With respect to this structure on E ~, the action of GL(n ,  •) is no longer 

smooth at the origin, and the invariant density blows up there. However, it 's easy 

to check that  with respect to the corresponding coordinates on B, the action of 

each linear transformation is analytic, and the invariant density is smooth and 

non-vanishing.* 

It  will prove convenient for what follows to give an alternative construction of 

with its "exotic" analytic structure. Begin by observing that  the map 

~:  ~ n  _ { 0 }  -'--> X = { x  e R n ] Ilxll > 1}; x ~ ( lIx] ln + 1)l/n IIxll x 

has Jacobian 1 with respect to the standard coordinates on R n. If A E GL(n, ~,) 

is any linear transformation on R n , then the diffeomorphism ~A~ -1 of X extends 

analytically to a neighborhood of the boundary (although the neighborhood will 

in general depend on A); this is easily seen directly from the formula 

( l l x l l  n - 1 l__j___~ 1/- 

~A~-~(x) = ~, I l x l l "  + I IAx l l  ~ j  A x .  

Let (r,O) denote the standard polar coordinates on X,  X = {(r, 0)l r > 1, 

0 E S~-1}, and define new coordinates (s, 0) by setting s -- r n - 1. Note that  the 

(s, 0) coordinates extend analytically across the boundary and have the property 

that  the standard volume form is proportional to ds A dO. Now define B as the 

quotient of 5( under the identification of antipodal points on the boundary. Let 

7r: X --* B denote the quotient map, and cover B with n neighborhoods U~ = 

{lr(x)l x E )(,x~ # 0}. Define analytic coSrdinates (t,O) on U~ by setting t = s 

on U + = {~r(x) E U~[ xi > 0} and setting t = - s  on U i- = {Tr(x) E U~ I xl < 0}. 

At this point it is clear that  the action of each A E SL(n, R) is analytic on the 

dense open set B - D, where D -- 7r(0)(), and preserves the volume form ds A dO. 

To see that  the action is analytic near D, note that  the map corresponding to A 

has the form 

(s, O) ~-* ( f (s ,  0), g(O)), 

where g corresponds to the standard action of A on ~ - 1 ,  which is certainly 

analytic. Preservation of the volume form ds/~ dO forces 

Of Og -1 (the inverse Jacobian), 

* To be precise: The standard structure on B is obtained by covering B with n 
neighborhoods Ui = {(x, [y]) E B I yi # 0} and taking as coordinates on Ui the n 
variables z l , . . . ,  x l , . . . ,  z,~, where zj = yj/yl. The new structure will be obtained 
in the same way, but with x~ in place of xi. 
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hence 

so that the action of A glues analytically across the boundary. 

As we have already observed, the above construction is purely local. Thus it can 

be applied at any fixed point, p, of a volume-preserving action which is smoothly 

equivalent to a linear action in a neighborhood of p. In particular, this is true 

for any action from the list of algebraic examples described in the introduction 

which has a fixed point. It is also worth remarking that the construction is fairly 

general, in as much as by arithmeticity, any irreducible higher-rank lattice F has 

a finite extension which has a subgroup of finite index F t which can be faithfully 

represented in SL(n,  Z) (for some large n), and the construction can be applied 

to the action of F ~ on the torus. 

Now suppose that F is a subgroup of finite index in SL(n, Z) with multiple fixed 

points on the torus. The preceding construction of A:/makes it clear that instead 

of blowing up a single point to a projective space, we can just as well blow up 

multiple fixed points (or appropriately chosen points along finite orbits) to spheres 

and glue the boundary spheres together in pairs (either with or without the 

antipodal map) to obtain additional examples of real-analytic, ergodic, volume- 

preserving actions on manifolds with complicated topology. 

Observe that the actions which we have constructed are not locally CLrigid. 

For the sake of concreteness, take the simplest example, that is let F = SL(n,  Z) 

and a: F --* Diff _~/denote the volume-preserving action obtained by blowing up 

the origin on the torus as described above. We construct a smooth one-parameter 

family aa of smooth (C ~ but not real analytic) actions such that a = r all 

actions aa are topologically conjugate, but no two of them are C 1 conjugate. 

Fix a neighborhood V of the exceptional divisor D in ~/. For each positive 

real number a, define ha: M --* h:/so that,  with respect to the (s, 0) coordinates 

defined above, 

ha(s,O) : (s%0) V(s,0) e V, 

and so that  the restrictions ha I U define a smooth path of C ~ diffeomorphisms 

on the open set U = M - D (with respect to the usual Fr@chet manifold structure 

on Diff U). Now set a~, = h ~ l a h a .  Inside V, each linear map A takes the form 

= ( 0g -a ,9(0) ) 
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with respect to the hs coordinates. Hence the action of each ~ E F under am is 

smooth on V and varies smoothly with c~. The same is true by construction on U. 

Obviously, all the actions as  are topologically equivalent. However, the unique 

absolutely continuous invariant measure for am is given by a smooth positive 

density on U, and on V has the form s�88 A d~. For a < 1 the density 

vanishes at D, while a > 1 it blows up at D, and the order of the density at D 

is different for each a,  so that  no two of the actions a s  are Cl-conjugate. (It is 

perhaps worth noticing that  the algebraic action corresponding to the standard 

blowing-up construction is C a conjugate but not analytically conjugate to the 

action O'l/n. ) 
Two questions arise immediately. 

QUESTION 1: IS the action ~ C 1 (or C a )  structurally stable (i.e., are nearby 

actions topologically conjugate) ? 

QUESTION 2: IS a locally rigid in the category of volume-preserving actions (i.e., 

are nearby volume-preserving actions smoothly conjugate)? 

Since the restriction of a to the projective space D C ~ / i s  simply the standard 

projective action ~" on p ~ - I  (which is algebraic but not volume-preserving) it 

would appear  that  questions about the rigidity of a may be closely related to 

questions about the rigidity of T. More generally this suggests that  it may be 

necessary to consider non-volume-preserving actions in order to understand the 

volume-preserving ones. 

Another interesting open question is whether the pathology exhibited by our 

construction can be eliminated by requiring that  the action preserve a stronger 

geometric structure than volume. For example, take F = $P(2n ,  Z). The 

standard symplectic form on T 2n is the unique symplectic form preserved by 

the standard linear action of F. It  is easy to see that  for n > 2, this form blows 

up at D under our construction. 

QUESTION 3: Does there exist a smooth symplectic action of SP(2n,  Z) on a 

compact 2n-dimensional symplectic manifold which is not smoothly conjugate to 

an at/ine action? 

Probably the most obvious question is whether anything like the effect of our 

construction can be achieved without changing the topology. 



278 A. KATOK AND J. LEWIS Isr. J. Math. 

QUESTION 4: IS every smooth, volume-preserving, ergodic action of SL(n ,  7/,) on 

T ~, n >_ 3, which induces the standard action on homology smoothly  conjugate 

to an affine action? 

Finally, the "exotic" volume-preserving actions of subgroups of finite-index 

in SL(n,  Z) on hT/which we describe above share with the standard actions on 

T ~ the property that  the only ergodic invariant measures are either atomic or 

absolutely continuous. 

QUESTION 5: Let F C SL(n ,Z) ,  n >_ 3, be a subgroup of  finite index, and let p 

be a smooth action o f f  on an n-dimensional manifold. Is every ergodic invariant 

measure either atomic or absolutely continuous? 

These questions represent only a small sample of the interesting open problems 

related to the classification of smooth actions of higher-rank lattices on compact 

manifolds. 
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